Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE.

Identifieur interne : 002978 ( Main/Exploration ); précédent : 002977; suivant : 002979

One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE.

Auteurs : Andreas Untergasser [Pays-Bas] ; Gerben J M. Bijl ; Wei Liu ; Ton Bisseling ; Jan G. Schaart ; René Geurts

Source :

RBID : pubmed:23112864

Descripteurs français

English descriptors

Abstract

Advancement in plant research is becoming impaired by the fact that the transfer of multiple genes is difficult to achieve. Here we present a new binary vector for Agrobacterium tumefaciens mediated transformation, pHUGE-Red, in concert with a cloning strategy suited for the transfer of up to nine genes at once. This vector enables modular cloning of large DNA fragments by employing Gateway technology and contains DsRED1 as visual selection marker. Furthermore, an R/Rs inducible recombination system was included allowing subsequent removal of the selection markers in the newly generated transgenic plants. We show the successful use of pHUGE-Red by transferring eight genes essential for Medicago truncatula to establish a symbiosis with rhizobia bacteria as one 74 kb T-DNA into four non-leguminous species; strawberry, poplar, tomato and tobacco. We provide evidence that all transgenes are expressed in the root tissue of the non-legumes. Visual control during the transformation process and subsequent marker gene removal makes the pHUGE-Red vector an excellent tool for the efficient transfer of multiple genes.

DOI: 10.1371/journal.pone.0047885
PubMed: 23112864
PubMed Central: PMC3480454


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE.</title>
<author>
<name sortKey="Untergasser, Andreas" sort="Untergasser, Andreas" uniqKey="Untergasser A" first="Andreas" last="Untergasser">Andreas Untergasser</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Wageningen, The Netherlands. andreas@untergasser.de</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bijl, Gerben J M" sort="Bijl, Gerben J M" uniqKey="Bijl G" first="Gerben J M" last="Bijl">Gerben J M. Bijl</name>
</author>
<author>
<name sortKey="Liu, Wei" sort="Liu, Wei" uniqKey="Liu W" first="Wei" last="Liu">Wei Liu</name>
</author>
<author>
<name sortKey="Bisseling, Ton" sort="Bisseling, Ton" uniqKey="Bisseling T" first="Ton" last="Bisseling">Ton Bisseling</name>
</author>
<author>
<name sortKey="Schaart, Jan G" sort="Schaart, Jan G" uniqKey="Schaart J" first="Jan G" last="Schaart">Jan G. Schaart</name>
</author>
<author>
<name sortKey="Geurts, Rene" sort="Geurts, Rene" uniqKey="Geurts R" first="René" last="Geurts">René Geurts</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23112864</idno>
<idno type="pmid">23112864</idno>
<idno type="doi">10.1371/journal.pone.0047885</idno>
<idno type="pmc">PMC3480454</idno>
<idno type="wicri:Area/Main/Corpus">002828</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002828</idno>
<idno type="wicri:Area/Main/Curation">002828</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002828</idno>
<idno type="wicri:Area/Main/Exploration">002828</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE.</title>
<author>
<name sortKey="Untergasser, Andreas" sort="Untergasser, Andreas" uniqKey="Untergasser A" first="Andreas" last="Untergasser">Andreas Untergasser</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Wageningen, The Netherlands. andreas@untergasser.de</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bijl, Gerben J M" sort="Bijl, Gerben J M" uniqKey="Bijl G" first="Gerben J M" last="Bijl">Gerben J M. Bijl</name>
</author>
<author>
<name sortKey="Liu, Wei" sort="Liu, Wei" uniqKey="Liu W" first="Wei" last="Liu">Wei Liu</name>
</author>
<author>
<name sortKey="Bisseling, Ton" sort="Bisseling, Ton" uniqKey="Bisseling T" first="Ton" last="Bisseling">Ton Bisseling</name>
</author>
<author>
<name sortKey="Schaart, Jan G" sort="Schaart, Jan G" uniqKey="Schaart J" first="Jan G" last="Schaart">Jan G. Schaart</name>
</author>
<author>
<name sortKey="Geurts, Rene" sort="Geurts, Rene" uniqKey="Geurts R" first="René" last="Geurts">René Geurts</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium tumefaciens (genetics)</term>
<term>Cloning, Molecular (methods)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Genetic Vectors (genetics)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Plants (genetics)</term>
<term>Plants (microbiology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (microbiology)</term>
<term>Rhizobium (physiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Transgenes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>Agrobacterium tumefaciens (génétique)</term>
<term>Clonage moléculaire (méthodes)</term>
<term>Medicago truncatula (génétique)</term>
<term>Medicago truncatula (microbiologie)</term>
<term>Plantes (génétique)</term>
<term>Plantes (microbiologie)</term>
<term>Rhizobium (physiologie)</term>
<term>Symbiose (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Vecteurs génétiques (génétique)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Genetic Vectors</term>
<term>Medicago truncatula</term>
<term>Plants</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>Agrobacterium tumefaciens</term>
<term>Medicago truncatula</term>
<term>Plantes</term>
<term>Vecteurs génétiques</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Cloning, Molecular</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Plantes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plants</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Clonage moléculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Symbiosis</term>
<term>Transformation, Genetic</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Symbiose</term>
<term>Transformation génétique</term>
<term>Transgènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Advancement in plant research is becoming impaired by the fact that the transfer of multiple genes is difficult to achieve. Here we present a new binary vector for Agrobacterium tumefaciens mediated transformation, pHUGE-Red, in concert with a cloning strategy suited for the transfer of up to nine genes at once. This vector enables modular cloning of large DNA fragments by employing Gateway technology and contains DsRED1 as visual selection marker. Furthermore, an R/Rs inducible recombination system was included allowing subsequent removal of the selection markers in the newly generated transgenic plants. We show the successful use of pHUGE-Red by transferring eight genes essential for Medicago truncatula to establish a symbiosis with rhizobia bacteria as one 74 kb T-DNA into four non-leguminous species; strawberry, poplar, tomato and tobacco. We provide evidence that all transgenes are expressed in the root tissue of the non-legumes. Visual control during the transformation process and subsequent marker gene removal makes the pHUGE-Red vector an excellent tool for the efficient transfer of multiple genes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23112864</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE.</ArticleTitle>
<Pagination>
<MedlinePgn>e47885</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0047885</ELocationID>
<Abstract>
<AbstractText>Advancement in plant research is becoming impaired by the fact that the transfer of multiple genes is difficult to achieve. Here we present a new binary vector for Agrobacterium tumefaciens mediated transformation, pHUGE-Red, in concert with a cloning strategy suited for the transfer of up to nine genes at once. This vector enables modular cloning of large DNA fragments by employing Gateway technology and contains DsRED1 as visual selection marker. Furthermore, an R/Rs inducible recombination system was included allowing subsequent removal of the selection markers in the newly generated transgenic plants. We show the successful use of pHUGE-Red by transferring eight genes essential for Medicago truncatula to establish a symbiosis with rhizobia bacteria as one 74 kb T-DNA into four non-leguminous species; strawberry, poplar, tomato and tobacco. We provide evidence that all transgenes are expressed in the root tissue of the non-legumes. Visual control during the transformation process and subsequent marker gene removal makes the pHUGE-Red vector an excellent tool for the efficient transfer of multiple genes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Untergasser</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Wageningen, The Netherlands. andreas@untergasser.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bijl</LastName>
<ForeName>Gerben J M</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bisseling</LastName>
<ForeName>Ton</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schaart</LastName>
<ForeName>Jan G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Geurts</LastName>
<ForeName>René</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C036483">T-DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="Y">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23112864</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0047885</ArticleId>
<ArticleId IdType="pii">PONE-D-12-18521</ArticleId>
<ArticleId IdType="pmc">PMC3480454</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gene. 1997 Oct 24;200(1-2):107-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9373144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 25;96(11):6535-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10339623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Apr;12(4):293-318</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10188270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2011 Aug;29(8):363-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Feb;65(4):622-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21244535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Jul;105(3):787-797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1385-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21770769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1786-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Aug;5(8):354-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Apr 19;344(6268):781-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2330031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 May 15;256(5059):998-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10744524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(10):2348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1996 Aug 19;289:115-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8805777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Sep;107(5):958-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12898019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Apr;16(4):933-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jun;13(6):617-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1789-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2005 Oct;14(5):605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16245151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Feb;14(2):77-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Feb 18;331(6019):909-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21787150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Mar;10(3):103-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2003 Jul;1(4):301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Dec;62(6):927-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16941206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2004 May;2(3):233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17147614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1647-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18410479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 20;6(13):3901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 5;315(5808):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Sep 5;26(17):3923-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17690687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2008;1(49):re11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19066400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2003 Mar;67(1):16-37, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12626681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 24;302(5645):630-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 13;100(10):5962-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Cell Biol. 2002 Dec;21(12):963-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12573053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):324-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Mar;13(3):115-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Nov 11;402(6758):191-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10647012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2013-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1957 Apr;16(2):374-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13416514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Feb;6(2):215-225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Oct;13(5):556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20817544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2680-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 5;315(5808):104-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Gueldre (province)</li>
</region>
<settlement>
<li>Wageningue</li>
</settlement>
<orgName>
<li>Université de Wageningue</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bijl, Gerben J M" sort="Bijl, Gerben J M" uniqKey="Bijl G" first="Gerben J M" last="Bijl">Gerben J M. Bijl</name>
<name sortKey="Bisseling, Ton" sort="Bisseling, Ton" uniqKey="Bisseling T" first="Ton" last="Bisseling">Ton Bisseling</name>
<name sortKey="Geurts, Rene" sort="Geurts, Rene" uniqKey="Geurts R" first="René" last="Geurts">René Geurts</name>
<name sortKey="Liu, Wei" sort="Liu, Wei" uniqKey="Liu W" first="Wei" last="Liu">Wei Liu</name>
<name sortKey="Schaart, Jan G" sort="Schaart, Jan G" uniqKey="Schaart J" first="Jan G" last="Schaart">Jan G. Schaart</name>
</noCountry>
<country name="Pays-Bas">
<region name="Gueldre (province)">
<name sortKey="Untergasser, Andreas" sort="Untergasser, Andreas" uniqKey="Untergasser A" first="Andreas" last="Untergasser">Andreas Untergasser</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002978 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002978 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23112864
   |texte=   One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23112864" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020